In collaboration with:
• Characterisation of structure and rheology of
 HR-US 102 allows:
 • Non-destructive / Non-invasive
 • Variety of measuring regimes - temperature
 ramp, kinetic, titration, flow-through modes
 • Broad dynamic range - diluted and
 concentrated samples
 • Digitally-controlled stirring system
 • Small sample volumes; 1mL - for standard
 cell, 0.03mL and higher for customer made
 measuring cells.
 • Measurements of the gelation temperatures and gelling speeds
 • Monitoring of compositional and microstructural changes at
 pre-gelation stage (A)
 • Monitoring of post-gelation re-arrangements

Advantages
• Monitors two independent characteristics,
 ultrasonic velocity and attenuation in a board
 frequency range, which provide structural,
 thermodynamic and viscoelastic sample
 information
• Able to analyse intermolecular forces, sample
 structures, composition, phase transitions
• Analysis of transparent, translucent and
 opaque samples

HR-US 102 provides a new tool for:
• Monitoring of the melting of carrageenan gel
• Detection of the gelation point and gelation interval
• Analysis of the transformations in the helical structure of polymer
• Characterisation of the gel network structure

HR-US 101 and 102 spectrometers allow:
• Monitoring of compositional and microstructural changes at
 pre-gelation stage (A)
• Detection of beginning of gelation
• Characterisation of gelation process and micro-structure
• Monitoring of post-gelation re-arrangements

HR-US 102 as a tool for optimisation of starch preparation
allows:
• Monitoring of the swelling of starch granules
• Measurements of the gelation temperatures and gelling speeds
• Optimisation of starch pre-hydration (soaking starch is water for a set
 period of time before heating)

HR-US 102 allows:
• Monitoring of both slow and fast acid gelation of
 whey proteins
• Detection and characterisation of the two
 different pre-gelation, gelation and post-gelation
 processes involved
• Characterisation of structure and rheology of
 different gel networks formed

In collaboration with:
A.C. Alting and R.W. Visschers
Wageningen Centre for Food Sciences (W CFS), Netherlands